ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
C. J. Mueller, J. K. Vaurio
Nuclear Science and Engineering | Volume 69 | Number 2 | February 1979 | Pages 264-278
Technical Paper | doi.org/10.13182/NSE79-A20616
Articles are hosted by Taylor and Francis Online.
This paper describes the basic equations and solution techniques of a collection of heat transfer and coolant voiding dynamics models that have been developed and successfully applied to simulate hypothetical accidents in liquid-metal-cooled fast breeder reactors (LMFBRs) to the point of permanent subcriticality or to the initiation of a prompt-critical excursion. These models emphasize analytic and integral solution techniques to minimize computational time and have been programmed into the SACO fast-running accident analysis computer code. The comparisons of SACO results to analogous SAS3D results used to qualify these models are illustrated and discussed. The fast-running nature of these models makes them an ideal sensitivity analysis tool for use in probabilistic evaluations of LMFBR accidents. Their use in this application is illustrated.