ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
Warren F. Witzig, Ross T. Thomas
Nuclear Science and Engineering | Volume 69 | Number 2 | February 1979 | Pages 251-263
Technical Paper | doi.org/10.13182/NSE79-A20615
Articles are hosted by Taylor and Francis Online.
Multidimensional linear regression analysis is employed as a modeling technique for the prediction of boiling water reactor (BWR) shutdown margin reactivity. A comparison is made between the best models developed using regression analysis and the General Electric (GE) three-dimensional BWR core simulator code. The GE code is based on one-group diffusion theory, and its accuracy is verified by comparison with experimental data. One use of this code is the calculation of shutdown margin throughout a fuel cycle, but it requires a large computing facility not located at a reactor site. The regression models give an approximation of a core's shutdown margin based on current core physics parameters. The method can be utilized at a BWR plant site to provide information demonstrating compliance with license and technical specification requirements. The results obtained by regression predictions for the two cores studied compare favorably with current industry methods. After establishing a regression model, predictions can be made at a reactor site using a pocket calculator.