The characteristics of neutron-induced fission in a compressed plasma composed of eqi-molar deuterium-tritium and plutonium are investigated. The slowing down parameters of the fission fragment—thermalization times, ranges, energy partitions, and spectra of suprathermal knock-on ions—are calculated for a wide variety of conditions. These results indicate that the fission fragment energy deposition can be regarded as both instantaneous and spatially localized with respect to the other processes of interest. Hence, all fragment energy will be deposited within any physical system. This will raise the energy of some of the plasma ions to a region where the fusion process is much more probable, thus enhancing the production of 14-MeV neutrons.