ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
O. L. Gonçalez, L. P. Geraldo, R. Semmler
Nuclear Science and Engineering | Volume 132 | Number 1 | May 1999 | Pages 135-147
Technical Note | doi.org/10.13182/NSE99-A2055
Articles are hosted by Taylor and Francis Online.
Neutron photoproduction studies for 232Th and 238U were carried out from 5.61 to 10.83 MeV, by using up to 30 neutron capture gamma rays with high resolution in energy (4 to 20 eV), produced in an experimental arrangement at the IPEN-IEA-R1 2-MW research reactor. Samples of U3O8 depleted to 0.34% in 235U and natural ThO2 were irradiated inside a 4 sr long-counter neutron detector system, 520.5 cm away from the capture target. The gamma-ray flux was determined by means of a coaxial solid state Ge(Li) detector (EG&G ORTEC, 25 cm3, 5%) previously calibrated with capture gamma rays from a standard target of nitrogen (melamine). The compound neutron photoproduction cross section was measured for the gamma-ray spectrum produced by each capture target. Two methods to unfold the set of experimental data were proposed in order to obtain the differential cross sections at the main gamma line energies: the iterative and the least-squares methods. The calculated neutron photoproduction cross sections for 232Th and 238U were compared with experimental data reported by other authors who have employed different gamma-ray sources. A good overall agreement was observed among the experimental data, however, marked discrepancies were identified for some data points, indicating the possibility of narrow structures showing up at these excitation energies.