ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
K. N. Schwinkendorf
Nuclear Science and Engineering | Volume 132 | Number 1 | May 1999 | Pages 118-126
Technical Paper | doi.org/10.13182/NSE99-A2053
Articles are hosted by Taylor and Francis Online.
Severe accident simulation has been performed in the past to predict the energy release arising from hypothetical core disruptive accidents (CDA) postulated to occur in liquid-metal reactors (LMRs). This field has developed to a mature state with the creation of computer codes such as SIMMER, but these codes are highly specific to LMR designs. More recent attention has focused on thermal-spectrum criticality accidents. This has resulted in the creation of a new simulator code, A Transient History for Energetic Nuclear Accidents_2D (ATHENA_2D), which solves the transient multigroup space-time kinetics equations, coupled to multichannel thermal hydraulics and computational fluid dynamics. This paper presents results from two-dimensional kinetics simulations performed for a water reflood recriticality accident in a damaged light water reactor, typical of a Three Mile Island end-state core geometry. The accident is initiated by assuming reflood water that is insufficiently borated and a reactivity-optimized debris bed. Reactivity insertion rates analyzed in this study generally are smaller than in LMR CDAs (tens of dollars per second versus up to hundreds of dollars per second), and the energetics are slightly lower. Parametric variation of input was performed, including reactivity insertion rate and initial temperature.