ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
Michael G. Lysenko, Hing-Ip Wong, G. Ivan Maldonado
Nuclear Science and Engineering | Volume 132 | Number 1 | May 1999 | Pages 78-89
Technical Paper | doi.org/10.13182/NSE99-A2050
Articles are hosted by Taylor and Francis Online.
Although artificial neural networks (ANNs) are powerful tools in terms of their high posttraining computational speed and their flexibility to construct complex nonlinear mappings from relatively few known data samples, a survey of past applications of ANNs to the area of core parameter prediction reveals drawbacks such as low prediction accuracy, lack of robust generalization, large network dimensionality, and typically high training requirements. This study provides a brief survey of past and recent applications of ANNs to direct core parameter predictions as well as an alternate hybrid approach that avoids the aforementioned shortcomings of ANNs by combining the mathematical rigor of generalized perturbation theory along with the strong qualities of ANNs in error prediction situations. The results presented focus exclusively on the neutron diffusion's fundamental mode eigenvalue (i.e., 1/keff) and demonstrate the viability of computationally inexpensive adaptive ANN error controllers for perturbation theory applications.