ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
Ser Gi Hong, Nam Zin Cho
Nuclear Science and Engineering | Volume 132 | Number 1 | May 1999 | Pages 65-77
Technical Paper | doi.org/10.13182/NSE99-A2049
Articles are hosted by Taylor and Francis Online.
A new transport theory method of characteristic direction probabilities (CDP), which can treat complicated geometries with computational efficiency, is presented. In the method, the entire problem is divided into subsystems or cells that are further subdivided into finer mesh regions (i.e., computational meshes). Within a subsystem or cell, the fine meshes are coupled by the directional transmission and collision probabilities for each characteristic direction. In other words, all fine meshes in a subsystem are not coupled together but only the fine meshes along the characteristic line are coupled for each direction. This is in contrast to the traditional collision probability methods (CPMs). To calculate the directional probabilities, ray tracing with the macroband concept is performed only on each subsystem type. To couple the subsystems, the angular flux (not the current as in the interface current method) on the interface between the adjacent subsystems is used. Therefore, the method combines the most desirable features of the discrete ordinates methods and those of the integral transport methods. To verify CDP, it is applied to two benchmark problems that consist of complex meshes and is compared with other methods (CPM, method of characteristics, and Monte Carlo method). The results show that CDP gives accurate results with short computing time.