ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
M. D. Oh, M. L. Corradini
Nuclear Science and Engineering | Volume 95 | Number 3 | March 1987 | Pages 225-240
Technical Paper | doi.org/10.13182/NSE87-A20452
Articles are hosted by Taylor and Francis Online.
A one-dimensional, propagation/expansion model has been developed for large scale vapor explosions based on a fragmentation concept involving film collapse and coolant jet impingement and entrapment. This fragmentation model was combined with the nonequilibrium propagation/explosion model to predict the integral behavior in a vapor explosion such as pressure history and explosion conversion ratio. The model predicts the correct qualitative trends from available explosion data (e.g., the fully instrumented test series at Sandia National Laboratories) as a function of fuel composition, coolant temperature, ambient pressure, coolant/fuel mass ratio, and initial constraint. Quantitative agreement with data is found to be quite dependent on the initial mixing conditions, i.e., coolant vapor and liquid volume fractions in the explosion zone. Some of the predicted trends would change when the scale increases.