ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
S. C. Mo, K. O. Ott
Nuclear Science and Engineering | Volume 95 | Number 3 | March 1987 | Pages 214-224
Technical Paper | doi.org/10.13182/NSE87-A20451
Articles are hosted by Taylor and Francis Online.
Activation measurements in fast neutron spectra, using detector foils in which the neutron mean-free-path in a resonance is small compared to the foil thickness, are revised by detailed space and energy self-shielding corrections. The experimental data are then comparable with the reaction rate density calculations. The self-shielding factors of individual Doppler-broadened resonances have been calculated with the integral transport theory. A multiple collision technique was required to treat resonance scattering inside the foil because of the small mean-free-path. The foil correction factor at each experimental position is obtained by combining the self-shielding factors of individual resonances with the calculated multigroup reaction rates at the foil locations. This gives a space-dependent foil correction factor for regions with spatially varying spectra. Applications of the foil correction technique to the integral reaction rate measurements of 197Au, 55Mn, 186W, and 232Th in a fast reactor blanket mockup are presented.