ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
T. D. Radcliff, J. R. Parsons, W. S. Johnson, A. E. Ruggles
Nuclear Science and Engineering | Volume 131 | Number 3 | March 1999 | Pages 426-438
Technical Paper | doi.org/10.13182/NSE99-A2044
Articles are hosted by Taylor and Francis Online.
An existing geometric and fluid-fluid scaled facility is applied to investigate the transport of borated safety injection (SI) fluid in the Westinghouse AP600 reactor vessel during a main steam-line rupture (MSLR) event. The AP600 reactor has coaxial injection into the vessel downcomer rather than the cold-leg cross-flow injection typical of operating power reactors. This gas-flow test facility has unique detail in the representation of the SI nozzle-to-core inlet path most important to SI transport. Analysis of the transport phenomena expected in the reactor and the scaled facility, given MSLR conditions, indicates that both buoyancy and turbulent diffusion can have comparable influences on SI transport. It is shown that different reactor-to-experiment velocity ratios are required to scale each phenomenon. Tests are performed to evaluate transient SI fluid concentration at the core inlet using the appropriate velocity ratios to scale buoyancy and diffusion. Two asymmetric loop-flow boundary conditions representative of the MSLR event as well as a symmetric flow condition are applied. While no one test result is fully similar to the expected reactor transport, this ensemble of tests provides data that are valuable for AP600 numerical model benchmarking.