ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
C. Ronchi, J. Sakellaridis, C. Syros
Nuclear Science and Engineering | Volume 95 | Number 4 | April 1987 | Pages 282-295
Technical Paper | doi.org/10.13182/NSE87-A20439
Articles are hosted by Taylor and Francis Online.
The diffusion equation for volatile radioactive fission products in sintered nuclear fuels is investigated. All known effects that may affect the rate of diffusion to the grain boundaries are taken into account: simultaneous diffusion of the radioactive precursors, radioactive decay, sink trapping, and radiation resolution. Starting from the analysis of the spatial transport equation, an expression for the boundary loss term to be used in the simpler reaction rate equation is deduced. For practical applications the boundary loss term in the absence of resolution effects can reasonably be assumed to be independent of time. This is not generally true if resolution effects are present; in this case the release calculations become more complex than it was assumed so far. Finally, a discussion on the properties of the boundary loss term as functions of the physical parameters involved follows, and details of the calculations are presented.