ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
W. L. Filippone, M. S. Smith,S. Woolf, J. C. Garth
Nuclear Science and Engineering | Volume 95 | Number 1 | January 1987 | Pages 22-46
Technical Paper | doi.org/10.13182/NSE87-A20430
Articles are hosted by Taylor and Francis Online.
An electron transport solver has been developed based on a streaming ray (SR) solution to the Spencer-Lewis equation. Several special numerical techniques were used to make the algorithm fast and accurate. These include,an efficient routine for simulating energy loss straggling,use of extended-transport-corrected and Fokker-Planck equivalent cross sections, which speed convergence and reduce both angular and spatial differencing errors,a discrete transport correction, which further speeds convergence and further reduces spatial differencing errors,the method of numerical shoves and countershoves, which attempts to estimate and correct the remaining spatial differencing errors.The extended transport correction and the Fokker-Planck equivalent cross sections were originally developed for SN computations. The remaining techniques are new. The use of all these techniques together with the SR method has led to a complicated but highly efficient electron transport algorithm. Its efficiency is especially evident in energy spectrum calculations for which other fast algorithms such as the SN method often yield poor results. Several sample calculations involving electron transport in aluminum slabs are presented.