ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
EPA administrator Lee Zeldin talks the future of nuclear
In a recent interview on New York radio station 77 WABC, administrator of the Environmental Protection Agency Lee Zeldin talked with host John Catsimatidis about the near-term future of the domestic nuclear industry and the role the EPA will play in the sector.
Catsimatidis kicked off the interview by asking if the U.S. will be able to reach total energy independence. Zeldin responded by saying that decreasing energy dependence on other countries, especially adversaries, was a top priority for him and the Trump administration.
D. J. Shieh, B. R. Upadhyaya, F. J. Sweeney
Nuclear Science and Engineering | Volume 95 | Number 1 | January 1987 | Pages 14-21
Technical Paper | doi.org/10.13182/NSE87-A20429
Articles are hosted by Taylor and Francis Online.
A new technique, based on the noise analysis of neutron detector and core-exit coolant temperature signals, is developed for monitoring the moderator temperature coefficient of reactivity in pressurized water reactors (PWRs). A detailed multinodal model is developed and evaluated for the reactor core subsystem of the loss-of-fluid test (LOFT) reactor. This model is used to study the effect of changing the sign of the moderator temperature coefficient of reactivity on the low-frequency phase angle relationship between the neutron detector and the core-exit temperature noise signals. Results show that the phase angle near zero frequency approaches -180 deg for negative coefficients and 0 deg for positive coefficients when the perturbation source for the noise signals is core coolant flow, inlet coolant temperature, or random heat transfer. Operational data from the LOFT reactor and two different commercial PWRs all show -180-deg phase lag at zero frequency. Furthermore, both the model study and data analysis indicate that the dominant noise perturbation source in the LOFT reactor is the core coolant flow fluctuations.