ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. T. Mihalczo, W. T. King, E. D. Blakeman
Nuclear Science and Engineering | Volume 95 | Number 1 | January 1987 | Pages 1-13
Technical Paper | doi.org/10.13182/NSE87-A20428
Articles are hosted by Taylor and Francis Online.
Experiments performed with two coupled uranium (93.16 wt% 235U) metal cylinders (17.77-cm o.d., 5.08 cm thick) are the first application to coupled systems of the 252Cf-source-driven neutron noise analysis method for obtaining the subcritical neutron multiplication factor. These coaxial cylinders were separated axially by various thicknesses of either air or borated plaster between the flat surfaces. In all measurements, the 252Cf neutron source was located at the center of the outer flat surface of one cylinder, and the two detectors were located in three configurations: (a) both adjacent to the radial surface of the cylinder with the source, (b) both detectors adjacent to the radial surface of the cylinder without the source, and (c) one detector adjacent to the radial surface of each cylinder. A ratio of spectral densities obtained with the source and detectors adjacent to the cylinder with the source can be interpreted using point kinetics to obtain the subcritical neutron multiplication factor. However, when the source and detectors are placed on different cylinders, a coupled kinetics model is required to interpret the ratio of spectral densities. The cross-power spectral densities between detector and source positioned on different cylinders depend on the neutronic coupling and approach zero as the coupling does. By comparing the subcriticality from the measurements performed with borated plaster separating the uranium cylinders to those separated by air, it was found that the neutron multiplication factor was always increased by the insertion of borated plaster between the cylinders, regardless of their separation.