ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Toshikazu Takeda, Yuichiro Kanayama
Nuclear Science and Engineering | Volume 131 | Number 3 | March 1999 | Pages 401-410
Technical Paper | doi.org/10.13182/NSE99-A2042
Articles are hosted by Taylor and Francis Online.
The multiband method has been extended to treat the resonance interference effect between two nuclides based on the intermediate resonance approximation. The integral equation of the flux belonging to different bands of the two nuclides is derived for a heterogeneous cell system. In the equation, a new band parameter is introduced. The new parameter denotes the conditional probability that a nuclide takes a certain band under the condition that the other nuclide takes another band. The calculational procedure of band parameters is described in a homogeneous medium. This method has been applied to a homogeneous medium and a thermal reactor cell containing 235U and 238U. The effective cross sections calculated by this method and the conventional multiband method without considering the interference effect are compared with the results by a reference continuous-energy Monte Carlo method. It is seen that the conventional multiband method greatly overestimates the fission and capture cross sections of 235U for energy groups where there are both resonances of 235U and 238U, and the present method remarkably improves the overestimation.