ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
Paul S. Lykoudis, Robert C. Hagar
Nuclear Science and Engineering | Volume 71 | Number 2 | August 1979 | Pages 192-201
Technical Paper | doi.org/10.13182/NSE79-A20410
Articles are hosted by Taylor and Francis Online.
Piping tees that are used to mix fluid streams at different temperatures are subjected to possibly severe thermal and mechanical stresses. There is reason to suspect that mixing in a piping tee could be improved by injecting the fluid streams into the tee through multiple jets. This paper reports the results of an experimental investigation of the effects of multiple-jet injection on mixing in a piping tee. The experimental work involves the measurement of the temperature fluctuation intensity with a hot-film sensor downstream of a simple 22.22-mm (7/8-in.)-diam tee with mixed multiple-jet injected hot and cold streams of water. The jets were provided by holes drilled in plates that partially blocked the inlet streams; 26 pairs of plates were investigated. The number of holes per plate varied from 1 to 51; the jet diameters ranged from 5 to 68% of the tee diameter. The inlet stream Reynolds number upstream of the jet plates was roughly 15 500 for each stream. The data indicated that the root mean square (rms) temperature fluctuation intensity measured at the tee outlet decreased dramatically as the jet plate cross-sectional area void fraction was decreased. When the jets emanating from the tee plates were misaligned, the reduction of the rms temperature fluctuation was not as high as when the jets were aligned. The rate of decay of the intensity downstream of the tee for most of the plates investigated was found to agree well with the −3/4 power decay law predicted by Corrsin's theory of scalar decay. However, unusual features in the intensity decay data were also observed, such as an increase of the intensity several diameters downstream before continuing to decay.