ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
A. Sanchez, A. dos Santos
Nuclear Science and Engineering | Volume 131 | Number 3 | March 1999 | Pages 387-400
Technical Paper | doi.org/10.13182/NSE99-A2041
Articles are hosted by Taylor and Francis Online.
A new methodology that is applicable to individual nuclides is developed for the determination of the intermediate resonance (IR) parameters in the multigroup formalism. The method keeps the main steps commonly used for the determination of these parameters and is compatible with the methods utilized for the generation of the multigroup libraries for thermal and epithermal reactors. The proposed method does not impose any restriction on the formalism used to describe the resonances. Use is made of the computational approach used by the GROUPR module of the NJOY system (flux calculator option). A numerical scheme is presented to determine the IR parameters by means of an iterative approach. Numerical results for the IR parameters in a heterogeneous system composed of UO2 (238U only) and hydrogen as an external moderator are reported as a function of the dilution 0, heterogeneity factor , and temperature T for several epithermal groups of the MUFT structure. The results are consistent, as shown by the consistency checks performed.