ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
R. E. Alcouffe, E. W. Larsen, W. F. Miller, Jr., B. R. Wienke
Nuclear Science and Engineering | Volume 71 | Number 2 | August 1979 | Pages 111-127
Technical Paper | doi.org/10.13182/NSE71-111
Articles are hosted by Taylor and Francis Online.
A study of spatial discretization schemes for the multigroup discrete-ordinates transport equations in slab geometry is described. The purpose of the study is to determine the most computationally efficient method, defined as the one that produces the minimum error for a given cost. We define cost as the total amount of computer time required to complete one inner iteration, given a limit on storage, and we use three error norms to measure the accuracies of edge fluxes, cell average fluxes, and integral parameters. We study three test problems; the first is a model one-group problem we examine in detail, while the second and third are more realistic multigroup problems. Our conclusion is that a new method, labeled linear characteristic, significantly outperforms all other methods that have been implemented up to the present time.