ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
R. E. Alcouffe, E. W. Larsen, W. F. Miller, Jr., B. R. Wienke
Nuclear Science and Engineering | Volume 71 | Number 2 | August 1979 | Pages 111-127
Technical Paper | doi.org/10.13182/NSE71-111
Articles are hosted by Taylor and Francis Online.
A study of spatial discretization schemes for the multigroup discrete-ordinates transport equations in slab geometry is described. The purpose of the study is to determine the most computationally efficient method, defined as the one that produces the minimum error for a given cost. We define cost as the total amount of computer time required to complete one inner iteration, given a limit on storage, and we use three error norms to measure the accuracies of edge fluxes, cell average fluxes, and integral parameters. We study three test problems; the first is a model one-group problem we examine in detail, while the second and third are more realistic multigroup problems. Our conclusion is that a new method, labeled linear characteristic, significantly outperforms all other methods that have been implemented up to the present time.