ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
A. Bassini, F. Premuda, W. A. Wassef
Nuclear Science and Engineering | Volume 71 | Number 2 | August 1979 | Pages 87-99
Technical Paper | doi.org/10.13182/NSE79-A20401
Articles are hosted by Taylor and Francis Online.
For kernels appearing in the system of integral equations for Legendre moments of the angular flux, we propose a factorized form that also accounts for the anisotropy of scattering and works in the original Euclidean space. The stationary problem in the above simplified mathematical formulation for monoenergetic neutrons is then solved by a DKPL technique, i.e., a suitable basis is defined, in terms of Legendre polynomials of the space variables, and the corresponding Fourier series development is adopted for the space distribution to reduce the system of integral equations for such unknowns to an algebraic system on the unknown coefficients of their Fourier series expansion inside the homogeneous parallelepiped. This expansion converges in the mean and point-wise uniformly to the exact solution. Both critical and subcritical physical situations are considered, and accurate numerical results for isotropic scattering are obtained.