ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
A. Bassini, F. Premuda, W. A. Wassef
Nuclear Science and Engineering | Volume 71 | Number 2 | August 1979 | Pages 87-99
Technical Paper | doi.org/10.13182/NSE79-A20401
Articles are hosted by Taylor and Francis Online.
For kernels appearing in the system of integral equations for Legendre moments of the angular flux, we propose a factorized form that also accounts for the anisotropy of scattering and works in the original Euclidean space. The stationary problem in the above simplified mathematical formulation for monoenergetic neutrons is then solved by a DKPL technique, i.e., a suitable basis is defined, in terms of Legendre polynomials of the space variables, and the corresponding Fourier series development is adopted for the space distribution to reduce the system of integral equations for such unknowns to an algebraic system on the unknown coefficients of their Fourier series expansion inside the homogeneous parallelepiped. This expansion converges in the mean and point-wise uniformly to the exact solution. Both critical and subcritical physical situations are considered, and accurate numerical results for isotropic scattering are obtained.