ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Douglas S. Drumheller
Nuclear Science and Engineering | Volume 72 | Number 3 | December 1979 | Pages 347-356
Technical Paper | doi.org/10.13182/NSE79-A20390
Articles are hosted by Taylor and Francis Online.
In many cases, the mixing of drops of hot liquid fuel with a more volatile coolant results in stable film boiling about the drops. At some later time, a disturbance can fragment the drops. This fragmentation increases the contact area between the liquids and results in a violent vaporization of the coolant. An understanding of this fragmentation mechanism is crucial to the prediction of the likelihood of violent fuel-coolant interactions. In this work, a fragmentation mechanism is proposed. It is shown how moderate pressure disturbances can cause the symmetrical collapse of a vapor film and allow the coolant to impact the drop. The impact is shown to be of sufficient strength to fragment the drop. This model quantitatively predicts the conditions necessary to lead to extensive fragmentation.