ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
K. Takeuchi
Nuclear Science and Engineering | Volume 72 | Number 3 | December 1979 | Pages 322-329
Technical Paper | doi.org/10.13182/NSE79-A20388
Articles are hosted by Taylor and Francis Online.
A method of forming one-dimensional networks that are equivalent to two-dimensional wave propagations with fluid-structure interactions was developed. The method was verified by analysis of the simple shaker for a computational experiment by the use of the MULTIPLEX code for one-dimensional hydraulics with fluid-structure interactions. By applying the method of network formation, the Fritz-Kiss experiment was subsequently analyzed. In the latter case, the computed in-water frequency was 17.39 Hz, in good agreement with the measured value, 17.0 Hz. Thus, the MULTIPLEX code was verified for analyses of two-dimensional systems with application of the network model.