ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
G. C. Baldwin, J. C. Solem
Nuclear Science and Engineering | Volume 72 | Number 3 | December 1979 | Pages 281-289
Technical Paper | doi.org/10.13182/NSE79-A20384
Articles are hosted by Taylor and Francis Online.
We show that upper bounds exist on the density of neutrons that can be moderated to a specified energy from an intense pulsed source of fast neutrons. Expressions are derived for the maximum density in the following cases: (a) a uniform infection of fast neutrons into an infinite moderator, (b) a localized central source in a finite heavy atom moderator, and (c) a point source in an infinite hydrogenous moderator. Correspondingly, upper bounds are given for the rates of single- and multiple-resonance neutron capture.