ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
G. C. Baldwin, J. C. Solem
Nuclear Science and Engineering | Volume 72 | Number 3 | December 1979 | Pages 281-289
Technical Paper | doi.org/10.13182/NSE79-A20384
Articles are hosted by Taylor and Francis Online.
We show that upper bounds exist on the density of neutrons that can be moderated to a specified energy from an intense pulsed source of fast neutrons. Expressions are derived for the maximum density in the following cases: (a) a uniform infection of fast neutrons into an infinite moderator, (b) a localized central source in a finite heavy atom moderator, and (c) a point source in an infinite hydrogenous moderator. Correspondingly, upper bounds are given for the rates of single- and multiple-resonance neutron capture.