ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Donald Bogart
Nuclear Science and Engineering | Volume 41 | Number 1 | July 1970 | Pages 37-46
Technical Paper | doi.org/10.13182/NSE70-A20361
Articles are hosted by Taylor and Francis Online.
The problem of precise calculation of spatial distributions of capture in resonance absorbers is crucial to the design of layered shields. Errors in spatial distribution of capture occur in multigroup neutron-transport calculations because of the necessarily broad energy groups employed. The single average-capture cross section in each group results in large underestimates of the capture rates near surfaces of resonance absorbers. Consequently, the spatial-capture gamma-ray generation and escape fraction are also in error. A method is presented for computing spatial-resonance-capture rates in thick layers. It employs group-effective resonance integrals to precalculate group-effective resonance cross sections that are universal functions of distance into the absorptive layer. The method is illustrated for captures in 238U for the energy region 0.5 eV to 100 keV. The method is applied to a spherical reactor-shield configuration that contains alternate layers of depleted uranium and lithium hydride. Detailed comparison is made of the results of a discrete ordinates multigroup calculation with those of the present method. The comparison shows that the difference in spatial-capture distribution of the Sn broad treatment of resonance capture causes the capture gamma-ray dose to be always underestimated. For example, the difference in spatial-capture distribution in a 7-cm slab of 238U causes the leakage dose to be a factor of 2 smaller than that obtained with the present method. The apparent generality of the present method suggests that it may be applied directly to the results of layered shield calculations made by Sn broad-group methods. Application of the method to the experimental variation of epicadmium capture with depth from the surface of metallic-uranium rods up to 5 cm in diameter as measured by Hellstrand provided spatial capture rates that agreed with experiment very well.