ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
M. R. Wagner, D. A. Sargis, S. C. Cohen
Nuclear Science and Engineering | Volume 41 | Number 1 | July 1970 | Pages 14-21
Technical Paper | doi.org/10.13182/NSE70-A20358
Articles are hosted by Taylor and Francis Online.
A low-order discrete ordinates model for the solution of a certain class of three-dimensional neutron-transport problems is described. The method can be applied to cuboidal configurations with a region structure that allows the use of constant mesh spacings in each of the three coordinate directions. The angular flux distribution in a unit mesh cell is described in terms of discrete directions connecting the midpoints of 14 neighbor cells. A three-dimensional multigroup discrete ordinates code 3DT has been written for x, y, z-geometry which allows calculation of various configurations for small critical assemblies with computing speed far surpassing Monte Carlo techniques. The computed results for individual fuel-block reactivity worths of the fast thermionic critical experiment of Gulf General Atomic are in most cases in excellent agreement with experiment.