ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Hiroshi Motoda
Nuclear Science and Engineering | Volume 41 | Number 1 | July 1970 | Pages 1-13
Technical Paper | doi.org/10.13182/NSE70-A20357
Articles are hosted by Taylor and Francis Online.
A variational treatment of the burnup optimization of continuous scattered refueling is presented and numerical solutions are given for a slab reactor. It is made quantitatively clear how the reactor dimension, the xenon and the Doppler feedback reactivity, the burnup dependence of fission cross section and the reflector performance affect the power distribution that maximizes the average discharge exposure. Power flattening and burnup maximization are contradictory in general, but are consistent if, and only if, the condition of the perfect reflection at the core boundary is satisfied. The optimal power distribution is peaked in the central—and depleted in the outer region; and becomes flatter as the reflector performance is increased. The maximum average burnup depends on the burnup dependence of fission cross section and the strength of the Doppler and the xenon feedback reactivity, even if the average burnup calculated by the point-reactor model is the same. The former effect on the optimal power distribution is very small but the latter effects greatly contribute to power flattening. Both effects reduce the maximum burnup and the effects of the latter two are of comparable order. As the reactor becomes smaller, the maximum burnup decreases almost linearly to the neutron leakage. Optimal refueling has an advantage of more than 10% in the average burnup over the conventional flat-refueling rate method. However the difference from the flat-burnup method is very small, considering that the optimal refueling is handicapped by its very bad power distribution.