ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
J. Hoover, G. K. Leaf, D. A. Meneley, P. M. Walker
Nuclear Science and Engineering | Volume 45 | Number 1 | July 1971 | Pages 52-65
Technical Paper | doi.org/10.13182/NSE71-1
Articles are hosted by Taylor and Francis Online.
A fuel cycle analysis system is presented for performing fast reactor fuel cycle calculations. The REBUS system, an acronym for REactor BUrnup System, solves for the infinite time (equilibrium) operating conditions of a recycle system under fixed conditions. REBUS obtains the feed enrichments, the burn step (operating) time, and the control requirements which satisfy the constraint on the fuel discharge burnup, give the desired unpoisoned multiplication constant at some specified time during reactor operation, and maintain criticality. REBUS includes models of both the in-reactor fuel management and the external cycle. The in-reactor fuel management model permits any physically realizable fuel management scheme. In the external cycle, reprocessing and sale of the discharged fuel and refabrication with charge fuel makeup from reprocessing plants and/or external feed supplies can be studied. The isotope chain matrix may contain β−, β+, and α-decay terms as well as (n, γ), (n, p), (n, α), (n, 2n), and (n, f) reactions. The REBUS system is comprised of a neutronics model and a fuel cycle model. The fuel cycle model contains no geometric information so that any neutronics solution can be used (zero to three dimensional, diffusion or transport theory, direct or synthesis). REBUS has been operated with one- and two-dimensional diffusion theory neutronics models up to the present time.