ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
J. Hoover, G. K. Leaf, D. A. Meneley, P. M. Walker
Nuclear Science and Engineering | Volume 45 | Number 1 | July 1971 | Pages 52-65
Technical Paper | doi.org/10.13182/NSE71-1
Articles are hosted by Taylor and Francis Online.
A fuel cycle analysis system is presented for performing fast reactor fuel cycle calculations. The REBUS system, an acronym for REactor BUrnup System, solves for the infinite time (equilibrium) operating conditions of a recycle system under fixed conditions. REBUS obtains the feed enrichments, the burn step (operating) time, and the control requirements which satisfy the constraint on the fuel discharge burnup, give the desired unpoisoned multiplication constant at some specified time during reactor operation, and maintain criticality. REBUS includes models of both the in-reactor fuel management and the external cycle. The in-reactor fuel management model permits any physically realizable fuel management scheme. In the external cycle, reprocessing and sale of the discharged fuel and refabrication with charge fuel makeup from reprocessing plants and/or external feed supplies can be studied. The isotope chain matrix may contain β−, β+, and α-decay terms as well as (n, γ), (n, p), (n, α), (n, 2n), and (n, f) reactions. The REBUS system is comprised of a neutronics model and a fuel cycle model. The fuel cycle model contains no geometric information so that any neutronics solution can be used (zero to three dimensional, diffusion or transport theory, direct or synthesis). REBUS has been operated with one- and two-dimensional diffusion theory neutronics models up to the present time.