ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
D. G. Cacuci, C. F. Weber, E. M. Oblow, J. H. Marable
Nuclear Science and Engineering | Volume 75 | Number 1 | July 1980 | Pages 88-110
Technical Paper | doi.org/10.13182/NSE75-88
Articles are hosted by Taylor and Francis Online.
General sensitivity theory is presented for treating problems characterized by systems of nonlinear equations with nonlinear responses. The concept of the Fréchet derivative is shown to be fundamental to both differential and variational approaches. These two approaches, unified through the Fréchet derivative, form an operator viewpoint of sensitivity theory, leading to identical expressions for the adjoint equations and for the sensitivity functions. Also presented is an alternative sensitivity formalism for systems of nonlinear matrix equations, such as those arising from the application of numerical methods to many practical problems. This approach significantly enlarges the scope and versatility of sensitivity theory as it allows direct treatment of parameters that are purely of numerical-methods origin. To demonstrate the usefulness and practical applications of both operator and matrix formalisms, a significantly nonlinear transient problem in fast reactor thermal hydraulics is considered. Following the derivation and comparative analysis of the adjoint equations and sensitivity expressions using both formalisms, an extensive sensitivity study for this problem is presented. Conclusions about the future applicability of the general theory are also discussed.