ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
L. C. Leal, H. Derrien, N. M. Larson, R. Q. Wright
Nuclear Science and Engineering | Volume 131 | Number 2 | February 1999 | Pages 230-253
Technical Paper | doi.org/10.13182/NSE99-A2031
Articles are hosted by Taylor and Francis Online.
A new R-matrix analysis of the 235U cross-section data in the 0- to 2250-eV energy region is presented. The analysis was performed with the SAMMY computer code that has recently been updated to permit, for the first time, inclusion of both differential and integral data within the analysis process. Fourteen differential data sets and six integral quantities were used in this evaluation: two measurements of fission plus capture, one of fission plus absorption, six of fission alone, two of transmission, and one of eta, plus standard values of thermal cross sections for fission and capture, and of K1 and the Westcott g factors for both fission and absorption. An excellent representation was obtained for the high-resolution transmission, fission, and capture cross-section data as well for the integral quantities. The result is a single set of resonance parameters spanning the entire range up to 2250 eV, a decided improvement over the present ENDF/B-VI evaluation, in which 11 discrete resonance parameter sets are required to cover that same energy range. This new evaluation is expected to greatly improve predictability of the criticality safety margins for nuclear systems in which 235U is present.