ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
Rouyentan Farhadieh
Nuclear Science and Engineering | Volume 78 | Number 3 | July 1981 | Pages 294-296
Technical Note | doi.org/10.13182/NSE81-A20306
Articles are hosted by Taylor and Francis Online.
Experimental study of the downward melting of a gas-releasing substrate solid surface by a hot liquid pool of different densities was performed. The molten phases of the solid and the liquid pool were mutually miscible. Heating of the liquid pool was obtained by a flat heater grid, suspended in the liquid above the solid surface. The liquid layer beneath the heater grid was thermally stable. After the onset of melting and gas release, the different flow regimes, identified in the case of nongas-releasing solid, were not encountered. The melting rate continuously increased with an increase in the ratio of the liquid density to the melted-solid density, ρ*, attaining a maximum at about ρ* ≈ 1.19, beyond which this rate decreased to even a lower value than that of nongas-releasing solid.