ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Rouyentan Farhadieh
Nuclear Science and Engineering | Volume 78 | Number 3 | July 1981 | Pages 294-296
Technical Note | doi.org/10.13182/NSE81-A20306
Articles are hosted by Taylor and Francis Online.
Experimental study of the downward melting of a gas-releasing substrate solid surface by a hot liquid pool of different densities was performed. The molten phases of the solid and the liquid pool were mutually miscible. Heating of the liquid pool was obtained by a flat heater grid, suspended in the liquid above the solid surface. The liquid layer beneath the heater grid was thermally stable. After the onset of melting and gas release, the different flow regimes, identified in the case of nongas-releasing solid, were not encountered. The melting rate continuously increased with an increase in the ratio of the liquid density to the melted-solid density, ρ*, attaining a maximum at about ρ* ≈ 1.19, beyond which this rate decreased to even a lower value than that of nongas-releasing solid.