ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
K. Takeuchi, S. Tanaka, M. Kinno
Nuclear Science and Engineering | Volume 78 | Number 3 | July 1981 | Pages 273-283
Technical Paper | doi.org/10.13182/NSE81-A20304
Articles are hosted by Taylor and Francis Online.
For the transport calculation of gamma rays including bremsstrahlung, an improvement is made in the PALLAS-PL, SP discrete ordinates direct-integration code to enable evaluation of bremsstrahlung. The electrons resulting from Compton scattering, pair production, and the photoelectric effect are individually evaluated based on the primary gamma-ray flux calculated with the code. Bremsstrahlung production is then calculated by applying the continuous electron slowing down model. For this purpose, both the electron stopping power and the differential cross section for bremsstrahlung production are evaluated. Comparisons of PALLAS calculations with experiments are presented to test the validity of this code and method. As a result, it has been observed that the PALLAS calculations result in fairly good agreement with experiments, except for some discrepancies at energies below ∼0.7 MeV in the energy spectrum transmitted through lead and iron from a plane isotropic 6.2-MeV gamma-ray source. There is agreement also with another experiment on the attenuation by lead of transmission dose ∼8-MeV gamma rays in a normally incident from a plane monodirectional source. Further, there is agreement with the energy spectrum in lead calculated by a moments method for a plane monodirectional 8-MeV source without inclusion of secondary photons. Also presented are calculations of buildup factors and of energy spectra, including the contribution of bremsstrahlung, for a plane monodirectional beam of 8-MeV gamma rays normally incident on lead and on tungsten.