ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
R. T. Santoro, R. G. Alsmiller, Jr., J. M. Barnes, G. T. Chapman
Nuclear Science and Engineering | Volume 78 | Number 3 | July 1981 | Pages 259-272
Technical Paper | doi.org/10.13182/NSE81-A20303
Articles are hosted by Taylor and Francis Online.
Integral experiments that measure the transport of ∼14-MeV deuterium-tritium (D-T) neutrons through laminated slabs of proposed fusion reactor shield materials have been carried out at the Oak Ridge National Laboratory. Measured and calculated neutron and gamma-ray energy spectra are compared as a function of the thickness and composition of Type 304 stainless steel, borated polyethylene (BP), and Hevimet (a tungsten alloy), and as a function of detector position behind these materials. The measured data were obtained by means of an NE-213 liquid scintillator using pulse-shape discrimination methods to resolve neutron and gamma-ray pulse-height data and spectral unfolding methods to convert these data to energy spectra. The calculated data were obtained using two-dimensional discrete-ordinates radiation transport methods in a complex calculational network that takes into account the energy-angle dependence of the D-T neutrons and the nonphysical anomalies of the Sn method. The transport calculations incorporate ENDF/B-IV cross-section data from the VITAMIN C data library. The measured and calculated neutron energy spectra are in good agreement behind slab configurations of Type 304 stainless steel and BP (∼10% for all neutron energies >850 keV). When 5 cm of Hevimet are added to a 45-cm-thick Type 304 stainless steel plus BP slab assembly, the agreement is less favorable. The agreement among the measured and calculated gamma-ray spectra for energies >750 keV ranges from ∼25% to a factor of ∼5 depending on the slab composition.