ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
R. T. Santoro, R. G. Alsmiller, Jr., J. M. Barnes, G. T. Chapman
Nuclear Science and Engineering | Volume 78 | Number 3 | July 1981 | Pages 259-272
Technical Paper | doi.org/10.13182/NSE81-A20303
Articles are hosted by Taylor and Francis Online.
Integral experiments that measure the transport of ∼14-MeV deuterium-tritium (D-T) neutrons through laminated slabs of proposed fusion reactor shield materials have been carried out at the Oak Ridge National Laboratory. Measured and calculated neutron and gamma-ray energy spectra are compared as a function of the thickness and composition of Type 304 stainless steel, borated polyethylene (BP), and Hevimet (a tungsten alloy), and as a function of detector position behind these materials. The measured data were obtained by means of an NE-213 liquid scintillator using pulse-shape discrimination methods to resolve neutron and gamma-ray pulse-height data and spectral unfolding methods to convert these data to energy spectra. The calculated data were obtained using two-dimensional discrete-ordinates radiation transport methods in a complex calculational network that takes into account the energy-angle dependence of the D-T neutrons and the nonphysical anomalies of the Sn method. The transport calculations incorporate ENDF/B-IV cross-section data from the VITAMIN C data library. The measured and calculated neutron energy spectra are in good agreement behind slab configurations of Type 304 stainless steel and BP (∼10% for all neutron energies >850 keV). When 5 cm of Hevimet are added to a 45-cm-thick Type 304 stainless steel plus BP slab assembly, the agreement is less favorable. The agreement among the measured and calculated gamma-ray spectra for energies >750 keV ranges from ∼25% to a factor of ∼5 depending on the slab composition.