ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS and the U.K.’s NI announce reciprocal membership agreement
With President Trump on a state visit to the U.K., in part to sign a landmark new agreement on U.S.-U.K. nuclear collaboration, a flurry of transatlantic partnerships and deals bridging the countries’ nuclear sectors have been announced.
The American Nuclear Society is taking an active role in this bridge-building by forming a reciprocal membership agreement with the U.K.’s Nuclear Institute.
W. P. Poenitz, L. R. Fawcett, Jr., D. L. Smith
Nuclear Science and Engineering | Volume 78 | Number 3 | July 1981 | Pages 239-247
Technical Paper | doi.org/10.13182/NSE81-1
Articles are hosted by Taylor and Francis Online.
The capture cross section of 238U was measured using the activation technique and 235U(n, f) and 197Au(n, γ) as reference cross sections. Capture events were measured by detection of two prominent gamma-ray transitions in the decay of the 239U daughter nuclide, 239Np, employing a high-resolution Ge(Li) detector. The system was calibrated with the absolutely calibrated alpha-particle emitter, 243Am, which decays to 239Np. Cross-section measurements were carried out at thermal neutron energy and in the neutron energy range from 30 keV to 3 MeV. Emphasis in the higher keV range was on absolute values between 0.14 keV and 1 MeV where the 238U(n, γ) cross section and its ratio to 235U(n, f) are not very sensitive to energy scale uncertainties, and the 238U(n, f) cross section is small. Background from fission products was found to restrict the accuracy of the measured data at energies 1.5 MeV.