ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
E. A. Fischer
Nuclear Science and Engineering | Volume 78 | Number 3 | July 1981 | Pages 227-238
Technical Paper | doi.org/10.13182/NSE81-A20300
Articles are hosted by Taylor and Francis Online.
An approximate method to calculate the parallel neutron leakage in fast reactor slab lattices is described. It is derived from the integral transport equation and assumes isotropic scattering. By using an expansion in terms of oscillating functions, rather than the usual power series expansion in the buckling, it is proven that the method is also valid for voided cells. Results for a two-region cell are presented; they confirm that the widely used Benoist equation is valid for cases when sodium is present. However, for voided or nearly voided cells, the Benoist equation fails, whereas the new method is valid for any cell composition. The same method is applied to find the effective diffusion coefficient for a low-density channel. In the limit of zero buckling, the method reduces to well-known results available in literature by Rowlands. However, the buckling correction, obtained by a consistent expansion of the integral transport equation, is different from similar corrections in the literature.