ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Dimitri G. Naberejnev, Claude Mounier, Richard Sanchez
Nuclear Science and Engineering | Volume 131 | Number 2 | February 1999 | Pages 222-229
Technical Paper | doi.org/10.13182/NSE99-A2030
Articles are hosted by Taylor and Francis Online.
At this time, experimental transmission data are analyzed with codes like REFIT or SAMMY, which use the free gas model to fit the form of the resonances. The use of the resonance parameters issued from such analysis for further reconstruction of the cross section with codes like NJOY can result in nonnegligible errors in the cross sections as well as in the reaction rates.To analyze the bias introduced on resonance parameters by the use of the free gas model and its consequences on reaction rates, we set up a numerical experiment that closely follows the actual scheme of the nuclear data evaluation.First, we use resonance parameters from the JEF2.2 nuclear library to calculate our reference cross section with Lamb's harmonic crystal model. This cross section is then used to simulate transmission coefficients, and a new set of resonance parameters is obtained using the code REFIT to fit the shape of the transmission with the help of the free gas model. These resonance parameters are used to estimate the errors in the reaction rates.We conclude that the free gas model does not ensure reaction rate conservation. A comparison of the capture rates showed that the discrepancy between this model (with the bias on the resonance parameters described here) and the harmonic crystal model (with initial JEF2.2 parameters) is important for reactor physics. For the first resonance of 238U, which represents 30% of the total 238U absorption in a thermal nuclear reactor, the error in the capture reaction rates reaches 3% for the biased resonance parameters issued from UO2 analysis, and up to 1% for the biased resonance parameters issued from metallic uranium analysis. Such a discrepancy could be corrected using a crystal model for the experimental data analysis.