ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Dimitri G. Naberejnev, Claude Mounier, Richard Sanchez
Nuclear Science and Engineering | Volume 131 | Number 2 | February 1999 | Pages 222-229
Technical Paper | doi.org/10.13182/NSE99-A2030
Articles are hosted by Taylor and Francis Online.
At this time, experimental transmission data are analyzed with codes like REFIT or SAMMY, which use the free gas model to fit the form of the resonances. The use of the resonance parameters issued from such analysis for further reconstruction of the cross section with codes like NJOY can result in nonnegligible errors in the cross sections as well as in the reaction rates.To analyze the bias introduced on resonance parameters by the use of the free gas model and its consequences on reaction rates, we set up a numerical experiment that closely follows the actual scheme of the nuclear data evaluation.First, we use resonance parameters from the JEF2.2 nuclear library to calculate our reference cross section with Lamb's harmonic crystal model. This cross section is then used to simulate transmission coefficients, and a new set of resonance parameters is obtained using the code REFIT to fit the shape of the transmission with the help of the free gas model. These resonance parameters are used to estimate the errors in the reaction rates.We conclude that the free gas model does not ensure reaction rate conservation. A comparison of the capture rates showed that the discrepancy between this model (with the bias on the resonance parameters described here) and the harmonic crystal model (with initial JEF2.2 parameters) is important for reactor physics. For the first resonance of 238U, which represents 30% of the total 238U absorption in a thermal nuclear reactor, the error in the capture reaction rates reaches 3% for the biased resonance parameters issued from UO2 analysis, and up to 1% for the biased resonance parameters issued from metallic uranium analysis. Such a discrepancy could be corrected using a crystal model for the experimental data analysis.