ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
D. G. Cacuci, Y. Ronen, Z. Shayer, J. J. Wagschal, Y. Yeivin
Nuclear Science and Engineering | Volume 81 | Number 3 | July 1982 | Pages 432-442
Technical Paper | doi.org/10.13182/NSE82-A20284
Articles are hosted by Taylor and Francis Online.
An analysis of spectral effects that arise from solving the k-, α-, γ-, and δ-eigenvalue formulations of the neutron transport equation is presented. Hierarchies of neutron spectra softness are established and expressed in terms of spatial-dependent local indices that are defined for both the core and the reflector of nuclear system configurations. Conclusions regarding the general behavior of the spectrum-dependent integral spectral indices and initial conversion ratios given by the k-, α-, γ-, and δ-eigenvalue equations are also presented. Spectral effects in the core and in the reflector are distinguished by defining separate integral spectral indices for the core and for the reflector. It is shown that the relationship between the spectra given by the k-, α-, γ-, and δ-eigenvalue equations and the spectrum in a corresponding critical configuration depends on the specific physical process that causes deviation from criticality. Nevertheless, some general recommendations are offered regarding the use of a particular eigenvalue equation for specific applications. All conclusions are supported by numerical experiments performed for an idealized thermal system.