ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
K. Wisshak, J. Wickenhauser, F. Käppeler, G. Reffo, F. Fabbri
Nuclear Science and Engineering | Volume 81 | Number 3 | July 1982 | Pages 396-417
Technical Paper | doi.org/10.13182/NSE82-6
Articles are hosted by Taylor and Francis Online.
A new experimental method has been used to determine the isomeric ratio (IR) in neutron capture of 241Am in a differential experiment. Thin 241Am samples have been activated with subthermal monoenergetic neutrons of 14.75 meV and quasi-monoenergetic neutrons of ∼30 keV. The decay of the 242Am nuclei produced has been determined by observing the emitted beta spectrum in a mini-orange spectrometer. The measurements have been performed relative to gold. The ratio R1 = σγ (241Am→ 242gAm)/σγ(Au) was found to be R1 = 5.79 ± 0.33 at 14.75 meV and R1 = 2.73 ± 0.16 at ∼30 keV. The corresponding IRs, σγ(241Am→ 242gAm)/σγ(Am), are 0.92. ± 0.06 at 14.75 meV and 0.65 ± 0.05 at ∼30 keV. Detailed theoretical calculations of the total capture cross section, the IR, and the capture gamma-ray spectra were performed in the energy range from 1 to 1000 keV taking advantage of recently available information on the discrete level scheme of 242Am. With the present knowledge on the level scheme of 242Am, it seems to be difficult to reproduce the strong energy dependence of IR as indicated by the experimental results.