ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
C. J. Jackson, D. G. Cacuci, H. B. Finnemann
Nuclear Science and Engineering | Volume 131 | Number 2 | February 1999 | Pages 164-186
Technical Paper | doi.org/10.13182/NSE99-A2026
Articles are hosted by Taylor and Francis Online.
A dimensionally adaptive, automatic switching algorithm is presented that has been developed for the RELAP5/PANBOX coupled thermal-hydraulics and neutron kinetics code system to switch between three-dimensional (3-D), one-dimensional (1-D), and point neutron kinetics models during a transient calculation. The switching criteria from higher- to lower-dimensional models are based on the time evolution of the flux shape, while the switching criteria from lower-dimensional models to the 3-D model are based on error estimates and reactivity criteria. Calculations of main-steam-line-break, control-rod-ejection, and boron-dilution transients have been used to validate the dimensionally adaptive automatic switching algorithm. These validation calculations show that the results produced by the automatic switching algorithm retain the accuracy of the 3-D reference calculations. Notably, they are considerably faster, typically requiring only 30 to 70% of the CPU time needed by the 3-D reference calculations. Furthermore, our calculations confirm that a 3-D neutron kinetics model is indeed required for these reactor safety transients by showing that the point-kinetics and 1-D models are by themselves very inaccurate.