ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
Chester D. Kylstra and Robert E. Uhrig
Nuclear Science and Engineering | Volume 22 | Number 2 | June 1965 | Pages 191-205
Technical Paper | doi.org/10.13182/NSE65-A20238
Articles are hosted by Taylor and Francis Online.
The concept of a transfer function for a nuclear system is extended to include spatial effects. The general equation is derived using the time-dependent Fermi age and diffusion theories for a single-region, isotropic, homogeneous medium. The fluctuations of the thermal-neutron density at any point in the assembly is related to the variation of the fast-neutron source. The general transfer function equation is specialized for several cases, including the case of a point source in a cylindrical medium. Theoretical curves are calculated for multiplying and non-multiplying media and compared with the commonly used lumped-parameter transfer function. The results indicate, in general, that the lumped-parameter model predicts the correct behavior of the nuclear system only if the output detector is carefully positioned at a specific distance from the source. If the detector is located elsewhere, the lumped-parameter model is not capable of accurate results. The theoretical equations were used to calculate the spatially dependent transfer function between two detectors (the cross-transfer function) that were located within light- and heavy-water subcritical assemblies, simulating some experimental measurements. A comparison of the experimental and theoretical transfer functions indicate that the Fermi age, diffusion theory model might be quite adequate in describing the kinetics of a nuclear system.