ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Chester D. Kylstra and Robert E. Uhrig
Nuclear Science and Engineering | Volume 22 | Number 2 | June 1965 | Pages 191-205
Technical Paper | doi.org/10.13182/NSE65-A20238
Articles are hosted by Taylor and Francis Online.
The concept of a transfer function for a nuclear system is extended to include spatial effects. The general equation is derived using the time-dependent Fermi age and diffusion theories for a single-region, isotropic, homogeneous medium. The fluctuations of the thermal-neutron density at any point in the assembly is related to the variation of the fast-neutron source. The general transfer function equation is specialized for several cases, including the case of a point source in a cylindrical medium. Theoretical curves are calculated for multiplying and non-multiplying media and compared with the commonly used lumped-parameter transfer function. The results indicate, in general, that the lumped-parameter model predicts the correct behavior of the nuclear system only if the output detector is carefully positioned at a specific distance from the source. If the detector is located elsewhere, the lumped-parameter model is not capable of accurate results. The theoretical equations were used to calculate the spatially dependent transfer function between two detectors (the cross-transfer function) that were located within light- and heavy-water subcritical assemblies, simulating some experimental measurements. A comparison of the experimental and theoretical transfer functions indicate that the Fermi age, diffusion theory model might be quite adequate in describing the kinetics of a nuclear system.