ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
J. B. Yasinsky and A. F. Henry
Nuclear Science and Engineering | Volume 22 | Number 2 | June 1965 | Pages 171-181
Technical Paper | doi.org/10.13182/NSE65-A20236
Articles are hosted by Taylor and Francis Online.
Numerical comparisons have been made between exact and approximate solutions to the two-group space-time diffusion equations. Two slab cores were studied, one 240-cm thick and the other 60-cm thick. Prompt critical bursts and limited ramp insertions of reactivity were simulated by imposing perturbations on the fission cross sections throughout the first quarter of the core. Feedback effects were neglected. Results were obtained using the conventional point kinetics equation, the adiabatic approximation and the space-time synthesis method. For one situation, two nodal methods were also examined. Comparisons with the exact space-time solutions suggest that, when the point kinetics equations are expected on qualitative grounds to be a poor approximation, the actual quantitative errors can be extremely large. Of the other approximations tested the space-time synthesis method gave the most accurate results.