ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
E. Johansson, E. Jonsson, M. Lindberg and J. Mednis
Nuclear Science and Engineering | Volume 22 | Number 2 | June 1965 | Pages 157-170
Technical Paper | doi.org/10.13182/NSE65-A20235
Articles are hosted by Taylor and Francis Online.
A series of experimental and theoretical investigations on neutron spectra in lattice cells has been started at the reactor R1. This report gives the results from the work on the first three cells. The cells consisted of uranium tubes surrounded by D2O. They were placed in the central vertical channel of the reactor. The neutron spectra from lead scatterers in the center of the tubes were measured with a fast chopper in the energy region from 0.01 to 100 eV. The beam spectrum from the lead piece was expected to correspond to the angular flux integrated over all angles. This was tested in an accessory experiment which gave some correction factors for the tube measurements. For the calculations the THERMOS code has been used. The energy region ranged from 0.00025 to 3.06 eV. Three scattering models for deuterium have been used—the free-gas model (D mass 3.595), the effective-width model, and the Nelkin model. With all three models the THERMOS code reproduced the thermal spectra within a few percent. The effective-width model and the Nelkin model also gave reasonable agreement in the epithermal region. The free-gas model, however, gave too high a ratio between the epithermal and the thermal neutron densities. The computation time required for a 20-space, 30-energy-group calculation on an IBM-7090 computer was about 4 min.