ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
M. Segev, G. Raitses, J. M. Paratte
Nuclear Science and Engineering | Volume 131 | Number 1 | January 1999 | Pages 123-131
Technical Paper | doi.org/10.13182/NSE99-A2023
Articles are hosted by Taylor and Francis Online.
The radial distribution of capture rate and effective cross section in fuel rods of radii R, forming a light water reactor (LWR) lattice, is derived with routine cell calculations. Any internal radial subrange (r1,r2) is treated through the assessment of absorption in the two corresponding annular absorbers (r1,R) and (r2,R). The lattice of the latter absorbers, whose pitch is exactly the original LWR lattice pitch, is equivalenced to a lattice of solid cylindrical rods. Thus, for example, to obtain a tenfold radial distribution, ten routine cell calculations are required.In determining the radius s of a cylinder equivalent to the annulus (r,R), the neutron escape from the annulus is first preserved by making the s rod have a circumference of 2R[1 - (0.5 - (1/)cos-1(r/R))G], where G is the "sticking" probability in the annulus for neutrons entering it from within. The radius s is then the result of making the solid rod and the annulus have the same average chord. In addition, a lattice is assigned to the s rods such that the original Dancoff factor is preserved. Finally, a Bell factor is determined for the s rod such that the actual grayness of the annulus (r,R) is preserved.A special program for transport-related probabilities is invoked in obtaining the sticking and Dancoff probabilities just described, as well as the Bell factor.Application of the theory was conducted with the ELCOS system BOXER cell code. Three benchmarks were considered. The first was the one suggested by Tellier et al. for a fuel pin of a typical pressurized water reactor cell. The second was almost identical to the first, except that the fuel was saturated with hydrogen to generate a flatter radial distribution than in the first benchmark. The third benchmark was based on detailed space-energy calculations for a boiling water reactor rod, performed in 1978.All three benchmark testings resulted in satisfactory comparisons. Hence, the present theory may provide a practical, routine way of obtaining the in-rod distribution of absorption and cross section, calling just for a repeated use of straightforward cell calculations.