ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
R. W. Dunlap and T. D. Gulden
Nuclear Science and Engineering | Volume 32 | Number 3 | June 1968 | Pages 407-416
Technical Paper | doi.org/10.13182/NSE68-A20223
Articles are hosted by Taylor and Francis Online.
A parametric study of a two-zone diffusion model has been performed to describe in-pile diffusion-controlled release of fission products from spherical coated fuel particles. Both the steady-state release and the times to reach steady state are considered. The effects of variations in diffusion coefficients of the fuel and coating, coating thickness, partition coefficient at the fuel-coating interface, contamination fraction, and decay constant have been considered. The results predict three regimes of release for different ranges of half-life and diffusion coefficients. Certain very long-lived isotopes will have high equilibrium release rates controlled by diffusion in the fuel core but probably will not come to equilibrium during the lifetime of a fuel particle. The release of many isotopes with intermediate half-lives is controlled by diffusion in the coating material. Equilibrium release rates in this range are large and probably will be achieved in practice for pyrolytic carbon coated fuel particles. The release of the inert gases is controlled by the level of fuel contamination in the coating material. The beneficial effects of using improved barrier coatings are discussed in terms of the diffusion model. Certain unusual aspects of the in-pile release of fission gases are explained in terms of the results of this model.