ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
W. Zobel, F. C. Maienschein, J. H. Todd, and G. T. Chapman
Nuclear Science and Engineering | Volume 32 | Number 3 | June 1968 | Pages 392-406
Technical Paper | doi.org/10.13182/NSE68-A20222
Articles are hosted by Taylor and Francis Online.
Determining the contribution of secondary gamma rays to the radiation dose produced by charged particles in space requires a knowledge of the cross sections for gamma-ray production by protons and alpha particles. The only data of this type that have been available have been for ∼145-MeV protons. In the experiment reported here, gamma-ray spectral measurements were made for protons of 16, 33, 56, and 160 MeV and alpha particles of 59 MeV incident on targets of low- and medium-Z materials. Absolute spectra were obtained, generally in the backward direction, with coincidence (pair) or anticoincidence (total-absorption) scintillation spectrometers. The analysis method used to correct for the imperfect spectrometer response yielded quantitative error estimates for the resultant spectra. A few measurements were made in the forward direction or at 90° to distinguish deviations from isotropy which were marked only for 16-MeV protons incident on a carbon target. From the spectra, cross sections were obtained for the production of specific gamma rays. Tables of these results include the probable nuclear reactions which produced the gamma rays. The production cross sections are plotted vs the average proton energy in the target for individual gamma rays for C and O. For each element, these individual production cross sections are added and the sums, which decrease with increasing proton energy, are compared with the total nonelastic cross sections predicted on the basis of intranuclear cascade calculations. The reasonably smooth variations of the total cross sections for gamma-ray production with atomic number are also shown. The proton inelastic scattering cross sections for specific levels correspond within error to 14-MeV neutron scattering data.