ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Thomas E. Stephenson and Sol Pearlstein
Nuclear Science and Engineering | Volume 32 | Number 3 | June 1968 | Pages 377-384
Technical Paper | doi.org/10.13182/NSE68-A20220
Articles are hosted by Taylor and Francis Online.
Early work ascertained that the Mn total cross section could not be fit by the Breit-Wigner single-level formula. Later work showed that a satisfactory fit below 10 keV could be achieved by the use of R-matrix analysis. Here, recent resonance data and the Breit-Wigner multilevel formula are used to fit the experimental data from 0.01 eV to 50 keV. Two bound levels and several positive energy levels are introduced in order to produce very good agreement with the measured total cross section. The parametric representation of the 55Mn cross section yields calculated values of 13.4 and 15 b for the capture 2200 m/sec cross section and resonance integral, and 1.94, 1.71, and 556 b for the thermal-bound atom, coherent-scattering cross section, and scattering resonance integral, respectively, all values being in good agreement with experiment. Qualitative agreement is obtained with polarization data.