ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
Thomas E. Stephenson and Sol Pearlstein
Nuclear Science and Engineering | Volume 32 | Number 3 | June 1968 | Pages 377-384
Technical Paper | doi.org/10.13182/NSE68-A20220
Articles are hosted by Taylor and Francis Online.
Early work ascertained that the Mn total cross section could not be fit by the Breit-Wigner single-level formula. Later work showed that a satisfactory fit below 10 keV could be achieved by the use of R-matrix analysis. Here, recent resonance data and the Breit-Wigner multilevel formula are used to fit the experimental data from 0.01 eV to 50 keV. Two bound levels and several positive energy levels are introduced in order to produce very good agreement with the measured total cross section. The parametric representation of the 55Mn cross section yields calculated values of 13.4 and 15 b for the capture 2200 m/sec cross section and resonance integral, and 1.94, 1.71, and 556 b for the thermal-bound atom, coherent-scattering cross section, and scattering resonance integral, respectively, all values being in good agreement with experiment. Qualitative agreement is obtained with polarization data.