ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
R. Kladnik
Nuclear Science and Engineering | Volume 32 | Number 3 | June 1968 | Pages 370-376
Technical Paper | doi.org/10.13182/NSE68-A20219
Articles are hosted by Taylor and Francis Online.
Some optical properties of neutron diffusion waves are discussed. Expressions are given for the change in the direction of propagation of the wave components reflected and refracted at the interface between two semi-infinite media by using appropriate formulae for the refraction of the electromagnetic waves in conducting media. It was found that the phase speed of the refracted asymptotic wave depends upon the direction of propagation. This dependence is especially noticeable in graphite/light-water systems. The phase speed is practically constant in graphite/ heavy-water systems. The results predict the existence of the total reflection of the asymptotic wave on the graphite/vacuum interface, providing the incidence angle is larger than ∼23°. Experimental verification of the diffusion wave refraction is suggested.