ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
K. D. Lathrop
Nuclear Science and Engineering | Volume 32 | Number 3 | June 1968 | Pages 357-369
Technical Paper | doi.org/10.13182/NSE68-4
Articles are hosted by Taylor and Francis Online.
The nature of anomalous computational effects due to the discretization of the angular variable in transport theory discrete ordinates approximations is described and analyzed. The origin of these effects within the derivation of the Sn discrete ordinates equations is shown, and the effects are related to the non-equivalence of the general geometry discrete ordinates equations and the corresponding spherical harmonics equations. Procedures are given for the definition of two-dimensional discrete ordinates equations that are equivalent to the spherical harmonics equations. Elimination of ray effects from the two-dimensional S2 equations by reduction to the diffusion theory equations is verified in a numerical example. Recipes for the elimination of ray effects are analyzed in the analytic solution of the infinite medium, isotropic line-source problem in the rectangular geometry, S2 approximation. Optimum magnitudes for corrective source terms are indicated by the analysis. It is concluded that ray effects may be eliminated by modification of the discrete ordinates formulation, but that the extra computational effort may be more expensive than the alternative of increasing the order of angular quadrature and that the presence of discretization effects may serve as an indicator of the adequacy of the angular quadrature used.