ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
A. Leonard
Nuclear Science and Engineering | Volume 32 | Number 3 | June 1968 | Pages 342-349
Technical Paper | doi.org/10.13182/NSE68-A20216
Articles are hosted by Taylor and Francis Online.
A transport calculation of the lattice diffusion length, yielding the “gross” decay of the asymptotic flux in a lattice, is made using the method of K. M. Case. Refinements over the diffusion calculation are shown to be 1) slight adjustments in the slab widths due to boundary effects, and 2) the appearance of exact homogeneous diffusion lengths as calculated by transport theory. The extension to “asymptotic” time-dependent problems is also given. For the neutron-wave problem, the complex-valued diffusion length is derived as a function of frequency, and the relation between the time decay constant and the buckling is given for the pulsed-neutron problem. Limiting cases involving very wide slabs are discussed. Finally, some experiments are briefly described for which the analysis of this paper might be applicable.