ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
R. G. Alsmiller, Jr., T. A. Gabriel, M. P. Guthrie
Nuclear Science and Engineering | Volume 40 | Number 3 | June 1970 | Pages 365-374
Technical Paper | doi.org/10.13182/NSE70-A20187
Articles are hosted by Taylor and Francis Online.
Electron-photon cascade calculations and photoneutron-production calculations have been carried out for 150-MeV electrons on thick targets of Be and Ta. In the energy region of the giant resonance an evaporation model was used to calculate the production spectrum, and at higher energies (25 MeV) an intranuclear-cascade model was used. The calculated photoneutron-production spectra cover the energy range 0.01 to ∼100 MeV and are given for target thicknesses of 1 and 20 radiation lengths in both Ta and Be. A method is described and sufficient information is given so that estimates of the photoneutron-production spectra in targets of intermediate thicknesses may be obtained. Results on the photoproton-production spectra are also given. The spectra from the Ta and Be targets are compared and are found to have very different characteristics in that the number of low-energy (< 1 MeV) neutrons produced in the Ta target is much greater than that produced in the Be target and the number of high-energy ( a few MeV) neutrons produced in the Be target is larger than that produced in the Ta target.