ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
H. Kschwendt
Nuclear Science and Engineering | Volume 44 | Number 3 | June 1971 | Pages 423-434
Technical Paper | doi.org/10.13182/NSE71-A20173
Articles are hosted by Taylor and Francis Online.
A synthesis and generalization of several recently developed methods for the numerical solution of the neutron transport equation in a homogeneous slab, assuming anisotropic scattering and energy dependence is presented. The generalization lies in the explicit inclusion of anisotropic scattering. After a Fourier transformation, a system of linear integral equations is obtained, the kernal of which is expanded in spherical Bessel functions. To process the final result in the direction of numerical evaluation, an approximation is proposed that results in the SPN - PL method where the flux is given by a double sum over spatial and angular Legendre polynomials. The expansion coefficients are determined from a system of linear integral equations. Treating the energy dependence by means of the multigroup concept, this system is reduced to a linear system of algebraic equations. Corresponding matrix elements depend on the optical thickness of the slab and can be computed from expansions available for arbitrary slab thicknesses. The SPN - PL method is of great practical importance since it is possible to obtain the solution of the transport equation with low computational effort. For example, assuming monoenergetic neutrons and isotropic scattering, the first and second eigenvalues of the transport equation can both be obtained with five exact digits from 3 × 3 or 4 × 4 matrices. The influence of the mean value of the linear anisotropy on the first and second eigenvalue and the decay constant is studied in detail. The validity of our approach is confirmed by comparing it with the SN and other methods. For certain mean values and optical thicknesses the second eigenvalue is found to be a complex number. Critical flux distribution is determined with great accuracy and shows perfect agreement with other published values. The flux due to a δ source, and a combination of a δ source with a flat one, is analyzed; it is confirmed that the SPN - PL method is not only applicable to small systems, but also (in most cases) to very large assemblies.