ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
Yong-Deok Lee, Naeem M. Abdurrahman, Robert C. Block, Donald R. Harris, Rudy E. Slovacek
Nuclear Science and Engineering | Volume 131 | Number 1 | January 1999 | Pages 45-61
Technical Paper | doi.org/10.13182/NSE97-100
Articles are hosted by Taylor and Francis Online.
The neutron slowing-down-time method for nondestructive assay of light water reactor spent fuel has been under development for many years. Results for a newly optimized design of a lead slowing-down-time spectrometer for spent-nuclear-fuel assay are presented. Monte Carlo analyses were performed to optimize the design of the assay device, determine its main parameters, investigate the effects of the spent-fuel assembly and the detector impurities on its performance, determine the fission signatures of the fissile isotopes in spent-fuel elements, and simulate the assay signal as a function of the slowing-down time, assuming threshold fission chambers for the assay detectors. The assay signals from the threshold detectors were analyzed to predict the unknown masses of the fissile isotopes in a typical spent commercial light water reactor fuel element. The broadened resolution of the system caused by the presence of the spent fuel inside the spectrometer pile was found sufficient to separate the signatures of the U and Pu fissiles in spent fuel.